Monday, November 17, 2008

Why do we blog?

Martin Fenner, asked some questions to science bloggers in Nature Networks that I think are interesting. Plus, the meme is going around my blogging neighbourhood so I thought I would join in as well:

1. What is your blog about?
It is mostly about science and technology with a particular focus on evolution, bioinformatics and the use of the web in science.

2. What will you never write about?
I will never blog about blog memes like this one. I tend to stay away from religion and politics but never is a very strong word.

3. Have you ever considered leaving science?
Does this mean academic research, research in general or science in general ? In any case no. I love problem solving and the freedom of academic research. The only thing I dislike about it is not being sure that I can keep doing this for as long as I wish.

4. What would you do instead?
If I could not do research I would probably try to work in scientific publishing. Doing research usually means that we have to focus on a very narrow field. Editors on the other hand are almost forced to broaden their scope and I think I would like this. I would also be interested in the use of new technologies in publishing.

5. What do you think will science blogging be like in 5 years?
Five years is a lot of time for the pace of technological development but not a long time for cultural change. I could be wrong but, if anything, there will be only a small increase in adoption of blogging as part of personal and group online presence along with the already existing web pages. I wish blogging (and other tools) would be use to further decentralize research agendas from physical location but I don't think that will happen in 5 years.

6. What is the most extraordinary thing that happened to you because of blogging?
I have gained a lot from blogging. The most concrete example was an invitation to attend SciFoo but there are many other things that are harder to evaluate. In some ways it is related to the benefits of attending conferences. It is useful because you get to interact with other scientists, exchange ideas, forces you to think through different perspectives, etc.

7. Did you write a blog post or comment you later regretted?
I probably did but I don't remember an example right now.

8. When did you first learn about science blogging?
As many other bioinformatic bloggers I started blogging in Nodalpoint, according to the archives in November 2001. I started this blog some two years after that.

9. What do your colleagues at work say about your blogging?
Not much really, I don't think many of them are aware of it. If any, the responses have been generally positive but I don't usually find many people interested in knowing more about blogging in science.

Wednesday, November 12, 2008

Open Science - just do it

My blog is 5 years old today and to celebrate I am trying to actually do some blogging. There are a couple of reasons why I have blogged less in the past months. In part it was due to FriendFeed and also in part because I was trying to finish a project on the evolution of phospho-regulation in yeast species. Nearing the end of a project should actually provide some of the most interesting blogging material but I did not ask for permission from everyone involved to write about ongoing work.

I have to admit that although I have been discussing and evangelizing open science for over two years I have done very little of it. I have used this blog sometimes to put up small analysis or mini-reviews but never to describe ongoing projects. I have tried to start a side-project online but I over-estimated the amount of "spare cycles" I have for this. So, I have talked it over with my supervisor and I am now free to "risk" as much as I want in trying out Open Science. The first project I will be trying to work on will be on E3 target prediction and evolution.

Prediction and evolution of E3 ubiquitin ligase targets
As I have mentioned above, I have been working in the past months on the evolution of phosphorylation and kinase-substrate interactions in yeast species. I am interested in the evolution of regulatory interactions in general because I believe that they are important for the evolution of novel phenotypes. This is why I will be trying to study the evolution of E3 target interactions. In order to get there I will try first to develop some methods to predict ubiquitination and E3 targets. Since a lot of the ideas and methodology applies to other post-translational modifications and even localization signals I will in the future try to generalize the findings to other types of interactions.

Some of the questions that I will try to address:
- How accurately can we predict E3 substrates ?
- How quickly in evolution do E3-targets change ?
- Is there co-regulation by kinases and E3s on the same targets (and how these evolve) ?

Once I have something substantial I will open a code repository on Google Code.