As an example , two sequential targets in an unbranched section of the network embedded in an negative feedback produces a dose-matrix that best fits a potentiation model (shown here, adapted from Fig3).
Having established by simulations that there is information on the drug-matrices that relate to the interaction of their targets they then tested the effect of 10 known antifungal drugs on the sterol pathway (also well established) of Candida glabrata. For each drug-drug combination they tried to fit the experimental dose matrices to the same 4 models and compared the best model fit to the expected for the position of the targets in the sterol pathway. For many cases (72%) the best model fit was the same as predicted from the sterol pathway model but only 54% of the best-fit models were unambiguous. There were some cases were drug-with-itself dose matrices (positive control) did not appear additive as expected. The authors mention that this is due to the "instability in the measured potency of a drug" but I am not sure why a drug-with-itself matrix would not be reproducible.
Finally the authors further tested this relation between drug combinations and target interactions by experimentally measuring drug dose-matrices for 94 drug/compounds in human(HCT116) tumor cells (see text for details).
In summary, even if the prediction accuracy is far from perfect, this work shows that it should be possible to either:
1 - use known pathway models plus drug dose-matrices to improve prediction of the most likely targets of the drugs
2 - use known drug-target relationships plus the drug dose-matrices to predict the network connectivity
One obvious complication is the multiple drug targets for the same compound that would reduce the usefulness of the predictions. Some interesting extensions could be to test drug-drug interactions in KO strains or in combinations with RNAi knock-downs
or protein over-expressions.